Sentiment Analysis of Platform X Users on Starlink Using Naive Bayes
##plugins.themes.bootstrap3.article.main##
Abstract
This research aims to analyze public sentiment towards Starlink through tweets collected using the hashtag "starlink." The data crawling process was successful in collecting 1888 tweets. However, upon checking and processing the data, we reduced the number of valid and relevant tweets to 416. This reduction occurred due to duplicate data and the use of common keywords. We performed sentiment classification using the Naive Bayes model, yielding the following sentiment distribution: We classified 287 tweets (68.99%) as positive, 112 tweets (26.92%) as neutral, and 17 tweets (4.09%) as negative. The model performance evaluation shows good results with a recall of 0.80, precision of 0.90, F1 score of 0.83, and accuracy score of 0.80. The results of this study indicate that the majority of tweets related to Starlink have positive sentiments, indicating a generally favorable public perception of the service. A small proportion of tweets showed neutral and negative sentiments, which can provide valuable input for service improvement. The Naive Bayes model is able to classify sentiment with fairly high accuracy, making it one of the most effective tools for sentiment analysis.
##plugins.themes.bootstrap3.article.details##
[2] T. Duan and V. Dinavahi, “Starlink Space Network-Enhanced Cyber-Physical Power System,” IEEE Trans. Smart Grid, vol. 12, no. 4, pp. 3673–3675, 2021, doi: 10.1109/TSG.2021.3068046.
[3] J. C. McDowell, “The Low Earth Orbit Satellite Population and Impacts of the SpaceX Starlink Constellation,” Astrophys. J. Lett., vol. 892, no. 2, p. L36, 2020, doi: 10.3847/2041-8213/ab8016.
[4] Y. Shaengchart and T. Kraiwanit, “Starlink satellite project impact on the Internet provider service in emerging economies,” Res. Glob., vol. 6, no. April, p. 100132, 2023, doi: 10.1016/j.resglo.2023.100132.
[5] A. Liu, X. Xu, Y. Xiong, and S. Yu, “Maneuver strategies of Starlink satellite based on SpaceX-released ephemeris,” Adv. Sp. Res., 2024.
[6] B. Hakim, “Analisa Sentimen Data Text Preprocessing Pada Data Mining Dengan Menggunakan Machine Learning,” JBASE - J. Bus. Audit Inf. Syst., vol. 4, no. 2, pp. 16–22, 2021, doi: 10.30813/jbase.v4i2.3000.
[7] D. Darwis, N. Siskawati, and Z. Abidin, “Penerapan Algoritma Naive Bayes Untuk Analisis Sentimen Review Data Twitter Bmkg Nasional,” J. Tekno Kompak, vol. 15, no. 1, p. 131, 2021, doi: 10.33365/jtk.v15i1.744.
[8] M. C. Kirana, N. P. Perkasa, M. Z. Lubis, and M. Fani, “Visualisasi Kualitas Penyebaran Informasi Gempa Bumi di Indonesia Menggunakan Twitter,” J. Appl. Informatics Comput., vol. 3, no. 1, pp. 23–32, 2019.
[9] A. K. Fauziyyah, “Analisis sentimen pandemi Covid19 pada streaming Twitter dengan text mining Python,” J. Ilm. SINUS, vol. 18, no. 2, pp. 31–42, 2020.
[10] M. D. Al Fahreza, A. Luthfiarta, M. Rafid, and M. Indrawan, “Analisis sentimen: Pengaruh jam kerja terhadap kesehatan mental generasi z,” J. Appl. Comput. Sci. Technol., vol. 5, no. 1, pp. 16–25, 2024.
[11] M. I. Fikri, T. S. Sabrila, and Y. Azhar, “Perbandingan Metode Naïve Bayes dan Support Vector Machine pada Analisis Sentimen Twitter,” Smatika J., vol. 10, no. 02, pp. 71–76, 2020, doi: 10.32664/smatika.v10i02.455.
[12] D. Duei Putri, G. F. Nama, and W. E. Sulistiono, “Analisis Sentimen Kinerja Dewan Perwakilan Rakyat (DPR) Pada Twitter Menggunakan Metode Naive Bayes Classifier,” J. Inform. dan Tek. Elektro Terap., vol. 10, no. 1, pp. 34–40, 2022, doi: 10.23960/jitet.v10i1.2262.
[13] P. K. Sari and R. R. Suryono, “Komparasi Algoritma Support Vector Machine Dan Random Forest Untuk Analisis Sentimen Metaverse,” J. Mnemon., vol. 7, no. 1, pp. 31–39, 2024, doi: 10.36040/mnemonic.v7i1.8977.
[14] Aldinata, A. M. Soesanto, V. C. Chandra, and D. Suhartono, “Sentiments comparison on Twitter about LGBT,” Procedia Comput. Sci., vol. 216, pp. 765–773, 2023, doi: 10.1016/j.procs.2022.12.194.
[15] W. F. Abdillah, A. Premana, and R. M. H. Bhakti, “Analisis Sentimen Penanganan Covid-19 dengan Support Vector Machine: Evaluasi Leksikon dan Metode Ekstraksi Fitur,” J. Ilm. Intech Inf. Technol. J. UMUS, vol. 3, no. 02, pp. 160–170, 2021, doi: 10.46772/intech.v3i02.556.
[16] H. Syah and A. Witanti, “Analisis Sentimen Masyarakat Terhadap Vaksinasi Covid-19 Pada Media Sosial Twitter Menggunakan Algoritma Support Vector Machine (Svm),” J. Sist. Inf. Dan Inform., vol. 5, no. 1, pp. 59–67, 2022.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.