##plugins.themes.bootstrap3.article.main##

maya khairani
Abdul Halim Hasugian
Raissa Amanda Putri

Abstract

A franchise is an individual or business that is licensed to use the intellectual property or business characteristics of the franchisor. Currently, the food and beverage business is very familiar because of its rapid development, one of which is boba drinks. In the food business, customer ratings and reviews are very important because they can provide suggestions and input to improve the quality of the products sold. This study analyzes drink reviews by differentiating positive and negative reviews in the text mining process using Naïve Bayes. Data was taken from Google reviews with a total of 132 data consisting of 81 positive reviews, 38 neutral and 13 negative. The accuracy of positive reviews is 70% and for all reviews it reaches 81%.

##plugins.themes.bootstrap3.article.details##

How to Cite
khairani, maya, Hasugian, A. H., & Putri, R. A. (2023). A Analysis of Public Sentiment towards Beverage Franchise Reviews Using the Naïve Bayes Algorithm. Instal : Jurnal Komputer, 15(02), 89–98. https://doi.org/10.54209/jurnalkomputer.v15i01.102
References
[1] H. Syahrani Fakultas Syariah IAIN Antasari and J. A. Yani Km, “BISNIS WARALABA DI INDONESIA DALAM PERSPEKTIF HUKUM BISNIS SYARIAH.”
[2] D. Suryati, “Bisnis Waralaba Dalam Prespektif Hukum Ekonomi Syariah,” Tahkim S-2 Huk. Ekon. Syari’ah UIN Sunan Gunung Djati Bandung Abstr., vol. XV, p. 33, 2009.
[3] M. N. Rahayu, “Pengaruh Kualitas Pelayanan Shopeefood Terhadap Minat Beli dan Kepuasan Konsumen di Kota Semarang,” Universitas Islam Sultan Agung Semarang, 2021.
[4] A. Firdaus, W. I. Firdaus, P. Studi, T. Informatika, M. Digital, and P. N. Sriwijaya, “Text Mining dan Pola Algoritma dalam Penyelesaian Masalah Informasi,” vol. 13, no. 1, pp. 66–78, 2021.
[5] I. M. dan C. M. Karyati, “Analisis Sentimen Terhadap Universitas Gunadarma Berdasarkan Opini Pengguna Twitter Menggunakan Metode Naive Bayes Classifier,” J. Ilm. KOMPUTASI, vol. 19, no. 4, pp. 507–521, 2020.
[6] A. Herdhianto, “Sentiment Analysis Menggunakan Naive Bayes Classifier (NBC) pada Tweet tetang Zakat,” 2020.
[7] Y. S. & B. Wasito, “Analisis Testimonial Wisatawan Menggunakan Text Mining dengan Metode Naive Bayes dan Decision Tree, Studi Kasus pada Hotel-Hotel di Jakarta,” J. Inform. dan Bisnis, pp. 39–49, 2014.
[8] E. Afrianti and R. I. Heroza, “Klasifikasi Teks dengan Naïve Bayes Classifier (NBC) untuk Pengelompokan Keterangan Laporan dan Durasi Recovery Time Laporan Gangguan Listrik PT . PLN ( Persero ) WS2JB Area Palembang,” vol. 12, no. 1, pp. 1955–1961, 2020.
[9] M. Nurjannah and I. F. Astuti, “PENERAPAN ALGORITMA TERM FREQUENCY-INVERSE DOCUMENT FREQUENCY ( TF-IDF ) UNTUK TEXT MINING,” vol. 8, no. 3, pp. 110–113, 2013.
[10] H. Sari, G. L. Ginting, and T. Zebua, “Penerapan Algoritma Text Mining dan TF-IDF Untuk Pengelompokan Topik Skripsi Pada Aplikasi Repository STMIK Budi Darma,” vol. 2, no. 7, pp. 414–432, 2021.
[11] Herianto, “Penerapan Text Mining untuk Mengidentifikasi Pengguna Twitter terhadap Fenomena Peran DPR RI,” vol. VIII, no. 2, pp. 36–44, 2018.
[12] D. Ariyanti and K. Iswardani, “Teks Mining untuk Klasifikasi Keluhan Masyarakat Pada Pemkot Probolinggo Menggunakan Algoritma Naïve Bayes,” J. IKRA-ITH Inform., vol. 4, no. 3, pp. 125–132, 2020.