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The advancement of deep learning has significantly improved the
automation of plant disease detection through image classification.
This study compares the performance of standard DenseNet121 and
an enhanced version incorporating Squeeze-and-Excitation (SE)
blocks for classifying tomato leaf diseases. A dataset derived from
PlantVillage was used, covering multiple disease categories and
healthy leaves. To improve generalization, extensive data
augmentation techniques were applied. Both architectures were
implemented and trained using PyTorch, with evaluation metrics
including accuracy, precision, recall, F1-score, and inference time. The
experimental results demonstrate that DenseNet121-SE significantly

outperforms the standard DenseNet121, achieving a classification
accuracy of 99.00%. The integration of SE blocks allows the model to
recalibrate channel-wise features adaptively, enhancing sensitivity to
important patterns while maintaining computational efficiency. This
study highlights the effectiveness of attention mechanisms and data
augmentation in improving classification performance and supports
their practical application in intelligent agriculture systems.
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image classification, deep
learning.

Corresponding Author:
Tuti Andriani
Universitas Sumatera Utara

Email: tutiandriani9530@gmail.com

INTRODUCTION
Currently, the use of deep learning technology has revolutionized the automation of
plant disease detection and medical diagnosis through digital images [1]. This
approach is capable of improving the accuracy and efficiency in automatically
identifying various plant pathologies, including tomato leaf diseases that significantly
impact global agricultural productivity [2]. Various convolutional neural network
(CNN) architectures such as DenseNet, VGG16, and Inception V3 have been widely
used for plant image classification and human health pathology purposes [3]. In
addition, the integration of attention mechanisms such as squeeze-and-excitation (SE)
has been shown to strengthen the model's ability to identify important features and
improve classification accuracy [4]. Previous research has shown that DenseNet
architecture combined with SE blocks (DenseNet-SE) can improve feature recognition
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[5], reducing overfitting [6], and improve model performance in plant disease
detection and medical imaging [7]. The use of data augmentation techniques is also
increasingly important in expanding dataset variety and preventing overfitting [8], so
that the model can generalize better to data from diverse real-world environments [9].
However, there has not been much research directly comparing the effectiveness of
standard DenseNet with DenseNet-SE [10] on the classification of tomato leaf diseases
using a data augmentation approach [11], [12]. Comparative studies that
systematically integrate spatial-channel attention and data augmentation remain very
limited, even though such approaches are essential for developing models that are not
only accurate but also practical for real-world agricultural applications [13]. Despite
various innovations, the main challenge remains in developing models that are not
only accurate but also efficient and lightweight for deployment in real-world settings,
especially in resource-constrained areas [14]. Therefore, this study aims to compare the
standard DenseNet architecture with an enhanced version incorporating SE blocks for
tomato leaf disease classification, by implementing data augmentation techniques to
improve model performance. The results are expected to provide insights into the
impact of attention mechanisms on model performance and offer practical solutions
for automated plant disease detection applications [15]. The use of deep learning
technology in image classification has undergone rapid development, particularly in
the fields of medical diagnosis and plant disease detection [16]. In the context of
agriculture, this approach offers an automated and accurate solution for identifying
leaf diseases that directly affect crop productivity [17]. One of the convolutional neural
network architectures that stands out in image classification tasks is DenseNet [18],
which is known for its advantages in addressing the vanishing gradient problem and
efficiently propagating feature information across layers [19]. A part from architecture
selection, the success of a classification model is also determined by advanced learning
strategies such as transfer learning and data augmentation [20]. Transfer learning
enables the utilization of knowledge from previously trained models, thereby
accelerating the training process and improving accuracy, especially when dealing
with limited amounts of data [21]. Meanwhile, data augmentation plays a crucial role
in increasing the variation of training images to enhance generalization and reduce the
risk of overfitting, which is common in limited datasets [22]. In an effort to enhance
the model's sensitivity to important features, channel-based attention mechanisms
such as the squeeze-and-excitation (SE) block have increasingly been adopted [23]. The
SE block functions to adaptively adjust channel weights, thus helping the model
emphasize relevant features and reduce the influence of less informative ones [24]. The
combination of DenseNet architecture and the SE block, known as DenseNet-SE, has
been proven to improve accuracy, enhance the feature extraction process, and
maintain training stability [25]. However, a remaining challenge is the development of
models that are not only accurate but also lightweight and efficient for real-world
deployment, particularly in agricultural environments with limited computational
resources [26]. The addition of SE components in the network architecture can indeed
enhance performance, however, it also increases complexity and computational cost,
thus requiring a more comprehensive evaluation of its effectiveness in real-world
applications. There is still a lack of research that explicitly compares the performance
of standard DenseNet and DenseNet-SE in tomato leaf disease classification [27],
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especially when considering the impact of augmentation techniques on the model’s
robustness in handling complex image variations [28]. In addition, many available
plant disease datasets still have limitations in representing diverse environmental
conditions, thus hindering the optimal deployment of the model in real-world settings.
Therefore, it is important to conduct a comparative study that evaluates the
effectiveness of both architectures in tomato leaf disease classification, using data
augmentation as a means to enhance generalization. This study is expected to provide
practical insights into the contribution of attention mechanisms to improving image
classification quality, while also considering operational efficiency to support the
implementation of intelligent and sustainable plant disease detection systems.

METHODS

Object and Hypothesis of the Study

This study focuses on evaluating two variants of the DenseNet architecture, namely
DenseNet121 (standard) and DenseNet121 enhanced with Squeeze-and-Excitation
blocks (DenseNetl121-SE), in the task of tomato leaf disease classification. The
proposed hypothesis is that the addition of SE-Blocks can significantly improve
classification performance, particularly in terms of accuracy, precision, recall, and F1-
score, compared to the standard architecture. This study also examines the impact of
data augmentation on the model's robustness against image variation.

Dataset and Preprocessing

The dataset used is a subset of PlantVillage, which contains thousands of tomato leaf
images infected with various types of diseases such as early blight, late blight, bacterial
spot, mosaic virus, as well as healthy leaves. The images were resized to 224x224 pixels
and normalized. Data augmentation was applied extensively to increase the diversity
of training images through techniques such as random rotation, horizontal flipping,
brightness adjustment, and scaling.

Model Architecture
DenseNet121 (standard): Relies on direct connections between layers for efficient
feature propagation. DenseNet121 + SE Block: Adds a channel attention mechanism
through the Squeeze-and-Excitation Block to enhance feature selectivity. The SE-Block
is applied after each dense block to adjust feature weights based on global spatial
context.
Squeeze-and-Excitation (SE) Block where SE Block filters feature channel-wise
with the formula:
a) Squeeze (Global Average Pooling) Integral:
1 H W
Z=— x,(i, ] 1
: H_W;; ) M)
where z. is the average intensity of pixels in the image, H and W are the
height and width of the image, respectively, and x.(i,j) is the pixel value at
coordinates (i,j).

b) Excitation (Fully Connected Layers):
s, =o(W,.ReLUW,.z,)) 2)
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where s. is the result of the transformation, W1 and W> are weight matrices, z. is the
input, ReLU is the ReLU (Rectified Linear Unit) activation function, and o is the
sigmoid activation function.

c) Reweighting :
Xcscaled — SC-XC

3)

where X. X“““is the scaled version of , with scale factor s..

Squeeze-and-Excitation (SE) blocks are integrated into the DenseNet-SE architecture
by adding them after each Dense Block to improve feature representation. SE Block
works through an adaptive attention mechanism to the feature channel.

Training Strategy

The model training was conducted using the PyTorch framework with a supervised
learning approach. All images in the dataset were processed through preprocessing
stages, including resizing to 224x224 pixels and normalizing pixel values. Data
augmentation techniques such as random rotation, horizontal flipping, and brightness
and contrast adjustments were used to enhance variation and improve the model’s
generalization to new data. The model was trained for 50 epochs using the Adam
optimizer with a learning rate of 1e-4. The batch size was set to 16 to maintain training
efficiency. Early stopping was implemented to automatically halt training if no
improvement in validation accuracy was observed over several consecutive epochs.
The entire training process was conducted in a Google Colab environment supported
by a Graphics Processing Unit (GPU) to accelerate computational processing.

Experimental Setup

The dataset was split into 80% for training and 20% for testing. Model performance
was evaluated using four main metrics: accuracy, precision, recall, and F1-score. In
addition, inference time was recorded to assess the model's efficiency in the
classification process. All experiments were conducted in the Google Colab
environment with GPU support to ensure smooth training and testing.

Comparison with Existing Models

To comprehensively evaluate performance, both models were compared with other
popular architectures, namely: DenseNet201 and MobileNetV2. This comparison was
conducted to determine the extent to which the enhanced DenseNet121-SE is
competitive in the context of tomato leaf disease classification.

RESULTS AND DISCUSSION
DenseNet and DenseNet-SE for Tomato Leaf Disease Classification
The DenseNet121 and DenseNet121-SE models were successfully implemented using
the PyTorch frameworkBoth models were adapted for the multi-class classification
task of tomato leaf diseases, with the number of classes corresponding to the categories
in the PlantVillage dataset. The DenseNet121 architecture served as the baseline, while
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the DenseNet121-SE was constructed by adding Squeeze-and-Excitation blocks after
each dense block. The training process was carried out for 50 epochs with early
stopping and employed data augmentation to enhance input variation. Initial results
indicate that the integration of SE-Blocks enhances the model’s sensitivity to important
features, with more stable classification results compared to the standard model.

Effect of Data Augmentation on Classification Accuracy

Data augmentation contributed significantly to improving classification accuracy for
both models. Augmentation techniques such as rotation, flipping, and contrast
adjustment successfully expanded the training data distribution and reduced the risk
of overfittingExperimental results show that the DenseNet121 model trained without
augmentation had lower accuracy compared to the model trained with data
augmentation. This effect was more pronounced in DenseNet121-SE, which
demonstrated stronger generalization capabilities when the training data was
enriched with visual variations.

Comparative Performance Evaluation
At the evaluation stage, a performance comparison was conducted among four deep
learning model architectures: DenseNet201, DenseNet121, and MobileNetV2, and
DenseNet121 equipped with Squeeze-and-Excitation blocks (DenseNet121-SE). The
evaluation was conducted using accuracy, precision, recall, and F1-score metrics.

Loss over Epochs

Thaining Loss
1.1 Valldation Loss
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Epoch

Figure 1. Loss Over Epoch
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Accuracy over Epochs
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Figure 2. Accuracy Over Epochs
Table 2. Comparison of Accuracy, Precision, Recall and F1-Score

Model Accuracy Precision Recall F1 Score
Densenet 201 0.6763 0.4943 0.4985 0.4935
Densenet 121 0.9623 0.8689 0.8690 0.8688
MobileNetV2 0.9289 0.9295 0.9289 0.9287
DenseNet-SE 0. 9900 0. 9902 0.9900 0.9900

Discussion of results

The results of this study demonstrate a consistent and significant improvement in
classification performance when incorporating Squeeze-and-Excitation (SE) blocks
into the DenseNet121 architecture. The SE mechanism adaptively recalibrates channel-
wise feature responses by modeling interdependencies between channels, which
enhances the network’s sensitivity to relevant features while suppressing less
informative ones. This effect was reflected in the superior accuracy, precision, recall,
and F1-score achieved by DenseNet121-SE across all experimental scenarios.

In particular, the DenseNet121-SE model achieved an accuracy of 99.00%, surpassing
the baseline DenseNet121 (96.23%), MobileNetV2 (92.89%), and even the deeper
DenseNet201 (67.63%). This finding suggests that model depth alone (as in
DenseNet201) does not guarantee better performance unless complemented by an
attention mechanism capable of enhancing feature representation. Additionally,
MobileNetV2 despite its efficiency underperformed compared to DenseNet121-SE,
indicating that lightweight architectures, while computationally efficient, may require
advanced feature calibration strategies to reach similar levels of accuracy.
Furthermore, the integration of data augmentation techniques significantly influenced
model generalization. By introducing variability through random rotation, flipping,
brightness adjustment, and scaling, the augmented dataset enabled the model to learn
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more robust and invariant features. This improvement was especially noticeable in the
DenseNet121-SE model, whose performance remained consistently high across varied
input conditions, demonstrating its strong generalization capabilities. Another key
observation is the efficiency aspect. Despite the added SE blocks, the DenseNet121-SE
model maintained a competitive inference time, indicating that the additional
computational overhead introduced by the attention mechanism is relatively small
compared to the performance gains obtained. This efficiency makes the model well-
suited for deployment in real-time agricultural monitoring systems, especially in
resource-constrained environments. Overall, the study confirms the effectiveness of
combining SE-based attention with DenseNet’s inherent connectivity in boosting
classification accuracy and robustness. It also underscores the importance of coupling
architectural enhancements with strategic data augmentation to overcome common
challenges such as overfitting and limited dataset diversity in plant disease detection
tasks.

CONCLUSION

The implementation of the DenseNetl21 and DenseNetl121-SE architectures
demonstrated that the addition of SE-Blocks effectively enhances the model's ability to
highlight important features, resulting in more accurate and stable classifications. Data
augmentation techniques had a positive impact on model performance by increasing
training data variation and reducing the risk of overfitting, especially on the tomato
leaf disease dataset which exhibits diverse visual conditions. Based on the evaluation
results, DenseNet121-SE achieved the best performance among the models, with
99.00% accuracy and high precision, recall, and F1-score values. This indicates that the
combination of SE-Block and data augmentation is effective for automatic and efficient
plant disease classification applications.
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