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 The advancement of deep learning has significantly improved the 
automation of plant disease detection through image classification. 
This study compares the performance of standard DenseNet121 and 
an enhanced version incorporating Squeeze-and-Excitation (SE) 
blocks for classifying tomato leaf diseases. A dataset derived from 
PlantVillage was used, covering multiple disease categories and 
healthy leaves. To improve generalization, extensive data 
augmentation techniques were applied. Both architectures were 
implemented and trained using PyTorch, with evaluation metrics 
including accuracy, precision, recall, F1-score, and inference time. The 
experimental results demonstrate that DenseNet121-SE significantly 
outperforms the standard DenseNet121, achieving a classification 
accuracy of 99.00%. The integration of SE blocks allows the model to 
recalibrate channel-wise features adaptively, enhancing sensitivity to 
important patterns while maintaining computational efficiency. This 
study highlights the effectiveness of attention mechanisms and data 
augmentation in improving classification performance and supports 
their practical application in intelligent agriculture systems. 
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INTRODUCTION 

Currently, the use of deep learning technology has revolutionized the automation of 
plant disease detection and medical diagnosis through digital images [1]. This 
approach is capable of improving the accuracy and efficiency in automatically 
identifying various plant pathologies, including tomato leaf diseases that significantly 
impact global agricultural productivity [2]. Various convolutional neural network 
(CNN) architectures such as DenseNet, VGG16, and Inception V3 have been widely 
used for plant image classification and human health pathology purposes [3]. In 
addition, the integration of attention mechanisms such as squeeze-and-excitation (SE) 
has been shown to strengthen the model's ability to identify important features and 
improve classification accuracy [4]. Previous research has shown that DenseNet 
architecture combined with SE blocks (DenseNet-SE) can improve feature recognition 
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[5], reducing overfitting [6], and improve model performance in plant disease 
detection and medical imaging [7]. The use of data augmentation techniques is also 
increasingly important in expanding dataset variety and preventing overfitting [8], so 
that the model can generalize better to data from diverse real-world environments [9]. 
However, there has not been much research directly comparing the effectiveness of 
standard DenseNet with DenseNet-SE [10] on the classification of tomato leaf diseases 
using a data augmentation approach [11], [12]. Comparative studies that 
systematically integrate spatial-channel attention and data augmentation remain very 
limited, even though such approaches are essential for developing models that are not 
only accurate but also practical for real-world agricultural applications [13]. Despite 
various innovations, the main challenge remains in developing models that are not 
only accurate but also efficient and lightweight for deployment in real-world settings, 
especially in resource-constrained areas [14]. Therefore, this study aims to compare the 
standard DenseNet architecture with an enhanced version incorporating SE blocks for 
tomato leaf disease classification, by implementing data augmentation techniques to 
improve model performance. The results are expected to provide insights into the 
impact of attention mechanisms on model performance and offer practical solutions 
for automated plant disease detection applications [15]. The use of deep learning 
technology in image classification has undergone rapid development, particularly in 
the fields of medical diagnosis and plant disease detection [16]. In the context of 
agriculture, this approach offers an automated and accurate solution for identifying 
leaf diseases that directly affect crop productivity [17]. One of the convolutional neural 
network architectures that stands out in image classification tasks is DenseNet [18], 
which is known for its advantages in addressing the vanishing gradient problem and 
efficiently propagating feature information across layers [19]. A part from architecture 
selection, the success of a classification model is also determined by advanced learning 
strategies such as transfer learning and data augmentation [20]. Transfer learning 
enables the utilization of knowledge from previously trained models, thereby 
accelerating the training process and improving accuracy, especially when dealing 
with limited amounts of data [21]. Meanwhile, data augmentation plays a crucial role 
in increasing the variation of training images to enhance generalization and reduce the 
risk of overfitting, which is common in limited datasets [22]. In an effort to enhance 
the model's sensitivity to important features, channel-based attention mechanisms 
such as the squeeze-and-excitation (SE) block have increasingly been adopted [23]. The 
SE block functions to adaptively adjust channel weights, thus helping the model 
emphasize relevant features and reduce the influence of less informative ones [24]. The 
combination of DenseNet architecture and the SE block, known as DenseNet-SE, has 
been proven to improve accuracy, enhance the feature extraction process, and 
maintain training stability [25]. However, a remaining challenge is the development of 
models that are not only accurate but also lightweight and efficient for real-world 
deployment, particularly in agricultural environments with limited computational 
resources [26]. The addition of SE components in the network architecture can indeed 
enhance performance, however, it also increases complexity and computational cost, 
thus requiring a more comprehensive evaluation of its effectiveness in real-world 
applications. There is still a lack of research that explicitly compares the performance 
of standard DenseNet and DenseNet-SE in tomato leaf disease classification [27], 

https://doi.org/10.54209/jurnalinstall.v17i08.429


Tuti Andriani, et al   
Page : 525 -533 

Doi : https://doi.org/10.54209/jurnalinstall.v17i08.429 

527 

 

especially when considering the impact of augmentation techniques on the model’s 
robustness in handling complex image variations [28]. In addition, many available 
plant disease datasets still have limitations in representing diverse environmental 
conditions, thus hindering the optimal deployment of the model in real-world settings. 
Therefore, it is important to conduct a comparative study that evaluates the 
effectiveness of both architectures in tomato leaf disease classification, using data 
augmentation as a means to enhance generalization. This study is expected to provide 
practical insights into the contribution of attention mechanisms to improving image 
classification quality, while also considering operational efficiency to support the 
implementation of intelligent and sustainable plant disease detection systems. 
 

METHODS 

Object and Hypothesis of the Study 
This study focuses on evaluating two variants of the DenseNet architecture, namely 
DenseNet121 (standard) and DenseNet121 enhanced with Squeeze-and-Excitation 
blocks (DenseNet121-SE), in the task of tomato leaf disease classification. The 
proposed hypothesis is that the addition of SE-Blocks can significantly improve 
classification performance, particularly in terms of accuracy, precision, recall, and F1-
score, compared to the standard architecture. This study also examines the impact of 
data augmentation on the model's robustness against image variation. 
 
Dataset and Preprocessing 
The dataset used is a subset of PlantVillage, which contains thousands of tomato leaf 
images infected with various types of diseases such as early blight, late blight, bacterial 
spot, mosaic virus, as well as healthy leaves. The images were resized to 224×224 pixels 
and normalized. Data augmentation was applied extensively to increase the diversity 
of training images through techniques such as random rotation, horizontal flipping, 
brightness adjustment, and scaling. 
 
Model Architecture 
DenseNet121 (standard): Relies on direct connections between layers for efficient 
feature propagation. DenseNet121 + SE Block: Adds a channel attention mechanism 
through the Squeeze-and-Excitation Block to enhance feature selectivity. The SE-Block 
is applied after each dense block to adjust feature weights based on global spatial 
context. 

Squeeze-and-Excitation (SE) Block where SE Block filters feature channel-wise 
with the formula: 
a) Squeeze (Global Average Pooling) Integral: 

1 1

1
( , )

.
c

H W

c

i j
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=                     (1) 

where 𝑧c is the average intensity of pixels in the image, 𝐻 and 𝑊 are the 
height and width of the image, respectively, and 𝑥c(𝑖,𝑗) is the pixel value at 
coordinates (𝑖,𝑗). 

 
b) Excitation (Fully Connected Layers): 

2 1( .ReLU(W. ))
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where 𝑠c is the result of the transformation, 𝑊1 and 𝑊2 are weight matrices, 𝑧c is the 
input, ReLU is the ReLU (Rectified Linear Unit) activation function, and 𝜎 is the 
sigmoid activation function. 

 
c) Reweighting : 

.scaled

c c cX s X=
          (3) 

where 𝑋c 
scaled

cX is the scaled version of , with scale factor sc. 

 
Squeeze-and-Excitation (SE) blocks are integrated into the DenseNet-SE architecture 
by adding them after each Dense Block to improve feature representation. SE Block 
works through an adaptive attention mechanism to the feature channel. 
 
Training Strategy 
The model training was conducted using the PyTorch framework with a supervised 
learning approach. All images in the dataset were processed through preprocessing 
stages, including resizing to 224×224 pixels and normalizing pixel values. Data 
augmentation techniques such as random rotation, horizontal flipping, and brightness 
and contrast adjustments were used to enhance variation and improve the model’s 
generalization to new data. The model was trained for 50 epochs using the Adam 
optimizer with a learning rate of 1e-4. The batch size was set to 16 to maintain training 
efficiency. Early stopping was implemented to automatically halt training if no 
improvement in validation accuracy was observed over several consecutive epochs. 
The entire training process was conducted in a Google Colab environment supported 
by a Graphics Processing Unit (GPU) to accelerate computational processing. 
 
Experimental Setup 
The dataset was split into 80% for training and 20% for testing. Model performance 
was evaluated using four main metrics: accuracy, precision, recall, and F1-score. In 
addition, inference time was recorded to assess the model's efficiency in the 
classification process. All experiments were conducted in the Google Colab 
environment with GPU support to ensure smooth training and testing. 
 
Comparison with Existing Models 
To comprehensively evaluate performance, both models were compared with other 
popular architectures, namely: DenseNet201 and MobileNetV2. This comparison was 
conducted to determine the extent to which the enhanced DenseNet121-SE is 
competitive in the context of tomato leaf disease classification. 
 
 

RESULTS AND DISCUSSION 

DenseNet and DenseNet-SE for Tomato Leaf Disease Classification 
The DenseNet121 and DenseNet121-SE models were successfully implemented using 
the PyTorch frameworkBoth models were adapted for the multi-class classification 
task of tomato leaf diseases, with the number of classes corresponding to the categories 
in the PlantVillage dataset. The DenseNet121 architecture served as the baseline, while 
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the DenseNet121-SE was constructed by adding Squeeze-and-Excitation blocks after 
each dense block. The training process was carried out for 50 epochs with early 
stopping and employed data augmentation to enhance input variation. Initial results 
indicate that the integration of SE-Blocks enhances the model’s sensitivity to important 
features, with more stable classification results compared to the standard model. 

 
 
 

Effect of Data Augmentation on Classification Accuracy 
Data augmentation contributed significantly to improving classification accuracy for 
both models. Augmentation techniques such as rotation, flipping, and contrast 
adjustment successfully expanded the training data distribution and reduced the risk 
of overfittingExperimental results show that the DenseNet121 model trained without 
augmentation had lower accuracy compared to the model trained with data 
augmentation. This effect was more pronounced in DenseNet121-SE, which 
demonstrated stronger generalization capabilities when the training data was 
enriched with visual variations. 

 
Comparative Performance Evaluation 
At the evaluation stage, a performance comparison was conducted among four deep 
learning model architectures: DenseNet201, DenseNet121, and MobileNetV2, and 
DenseNet121 equipped with Squeeze-and-Excitation blocks (DenseNet121-SE). The 
evaluation was conducted using accuracy, precision, recall, and F1-score metrics. 

 
Figure 1. Loss Over Epoch 
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Figure 2. Accuracy Over Epochs 

 
Table 2. Comparison of Accuracy, Precision, Recall and F1-Score 

Model Accuracy Precision Recall  F1 Score 

Densenet 201 0.6763 0.4943 0.4985 0.4935 

Densenet 121 0.9623 0.8689 0.8690 0.8688 

MobileNetV2 0.9289 0.9295 0.9289 0.9287 

DenseNet-SE 0. 9900       0. 9902     0.9900 0.9900 

 
Discussion of results  
The results of this study demonstrate a consistent and significant improvement in 
classification performance when incorporating Squeeze-and-Excitation (SE) blocks 
into the DenseNet121 architecture. The SE mechanism adaptively recalibrates channel-
wise feature responses by modeling interdependencies between channels, which 
enhances the network’s sensitivity to relevant features while suppressing less 
informative ones. This effect was reflected in the superior accuracy, precision, recall, 
and F1-score achieved by DenseNet121-SE across all experimental scenarios. 

 
In particular, the DenseNet121-SE model achieved an accuracy of 99.00%, surpassing 
the baseline DenseNet121 (96.23%), MobileNetV2 (92.89%), and even the deeper 
DenseNet201 (67.63%). This finding suggests that model depth alone (as in 
DenseNet201) does not guarantee better performance unless complemented by an 
attention mechanism capable of enhancing feature representation. Additionally, 
MobileNetV2 despite its efficiency underperformed compared to DenseNet121-SE, 
indicating that lightweight architectures, while computationally efficient, may require 
advanced feature calibration strategies to reach similar levels of accuracy. 
Furthermore, the integration of data augmentation techniques significantly influenced 
model generalization. By introducing variability through random rotation, flipping, 
brightness adjustment, and scaling, the augmented dataset enabled the model to learn 
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more robust and invariant features. This improvement was especially noticeable in the 
DenseNet121-SE model, whose performance remained consistently high across varied 
input conditions, demonstrating its strong generalization capabilities. Another key 
observation is the efficiency aspect. Despite the added SE blocks, the DenseNet121-SE 
model maintained a competitive inference time, indicating that the additional 
computational overhead introduced by the attention mechanism is relatively small 
compared to the performance gains obtained. This efficiency makes the model well-
suited for deployment in real-time agricultural monitoring systems, especially in 
resource-constrained environments. Overall, the study confirms the effectiveness of 
combining SE-based attention with DenseNet’s inherent connectivity in boosting 
classification accuracy and robustness. It also underscores the importance of coupling 
architectural enhancements with strategic data augmentation to overcome common 
challenges such as overfitting and limited dataset diversity in plant disease detection 
tasks. 
 

 

CONCLUSION 

The implementation of the DenseNet121 and DenseNet121-SE architectures 
demonstrated that the addition of SE-Blocks effectively enhances the model's ability to 
highlight important features, resulting in more accurate and stable classifications. Data 
augmentation techniques had a positive impact on model performance by increasing 
training data variation and reducing the risk of overfitting, especially on the tomato 
leaf disease dataset which exhibits diverse visual conditions. Based on the evaluation 
results, DenseNet121-SE achieved the best performance among the models, with 
99.00% accuracy and high precision, recall, and F1-score values. This indicates that the 
combination of SE-Block and data augmentation is effective for automatic and efficient 
plant disease classification applications. 
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